CHAPTER

Boosting Styles with CSS3

dard is fused into the fabric of the Web almost as tightly as HTML. Whether

you're laying out pages, building interactive buttons and menus, or just making
things look pretty, CSS is a fundamental tool. In fact, as HTML has increasingly
shifted its focus to content and semantics (page 44), CSS has become the heart and
soul of web design.

It would be almost ludicrous to build a modern website without CSS. The stan-

Along the way, CSS has become far more detailed and far more complex. When CSS
evolved from its first version to CSS 2.1, it quintupled in size, reaching the size of
a modest novel. Fortunately, the creators of the CSS standard had a better plan for
future features. They carved the next generation of enhancements into a set of sepa-
rate standards, called modules. That way, browser makers were free to implement
the most exciting and popular parts of the standard first—which is what they were
already doing, modules or not. All together, the new CSS modules fall under the
catchall name CSS3 (note the curious lack of a space, as with HTML5).

CSS3 has roughly 50 modules in various stages of maturity. They range from fea-
tures that provide fancy eye candy (like rich fonts and animation) to ones that serve
a more specialized, practical purpose (for example, speaking text aloud or varying
styles based on the capabilities of the computer or mobile device). Altogether, they
include features that are reliably supported in the most recent versions of all modern
browsers and features so experimental that no browser yet supports them.

In this chapter, you'll tour some of the most important (and best supported) parts of
CSS3. First, you'll learn how to jazz up your text with virtually any font. Then, you'll
learn how to tailor your styles to suit different sized browser windows and different
types of web-connected devices, like iPads and iPhones. Next, you'll see how to use

237

Using CSS3 Today

shadows, rounded corners, and other refinements to make your boxes look better.
Finally, you'll learn how you can use transitions to create subtle effects when the visi-
tor hovers over an element, clicks on it, or tabs over to a control. (And you’'ll make
these effects even better with two more CSS3 features: transforms and transparency.)

But first, before you get to any of these hot new features, it's time to consider how you
can plug in the latest and most stylin’ styling features without leaving a big chunk of
your audience behind.

Using CSS3 Today

CSS3 is the unchallenged future of web styling, and it’s not finished yet. Most mod-
ules are still being refined and revised, and no browser supports them all. This means
CSS has all the same complications as HTML5. Website authors like yourself need
to decide what to use, what to ignore, and how to bridge the gaping support gaps.

There are essentially three strategies you can use when you start incorporating CSS3
into a website. The following sections describe them.

Note: (553 is not part of HTMLS. The standards were developed separately, by different people working
at different times in different buildings. However, even the W3C encourages web developers to lump
HTMLS5 and CSS3 together as part of the same new wave of modern web development. For example, if
you check out the W3C's HTMLS logo-building page at www.w3.org/html/logo, you'll see that it encour-
ages you to advertise CSS3 in its HTMLS logo strips.

Strategy 1: Use What You Can

It makes sense to use features that already have solid browser support across all
browser brands. One example is the web font feature (page 244). With the right font
formats, you can get it working with browsers all the way back to IE 6. Unfortunately,
very few CSS3 features fall into this category. The word-wrap property works virtu-
ally everywhere, and older browsers can do transparency with a bit of fiddling, but
just about every other feature leaves the still-popular IE 7 and IE 8 browsers in the
dust.

Nofe: Unless otherwise noted, the features in this chapter work on the latest version of every modern
browser, including Internet Explorer 9. However, they don't work on older versions of IE.

Strategy 2: Treat CSS3 Features as Enhancements

CSS3 fans have a rallying cry: “Websites don’t need to look exactly the same on
every browser” Which is certainly true. (They have a website, too—see http://
Do WebsitesNeed ToBeExperiencedExactlyTheSamelnEveryBrowser.com.)

HTMLS: THE MISSING MANUAL

The idea behind this strategy is to use CSS3 to add fine touches that won't be missed
by people using less-capable browsers. One example is the border-radius property
that you can use to gently round the corners of a floating box. Here’s an example:
header {

background-color: #7695FE;

border: thin #336699 solid;

padding: 10px;

margin: 10px;

text-align: center;

border-radius: 25px;

}

Browsers that recognize the border-radius property will know what to do. Older
browsers will just ignore it, keeping the plain square corners (Figure 8-1).

Using €SS3 Today

How the World Could End

Figure 8-1:
How the World Could End On Internet Explorer
9, this header box
has rounded corners
(top). IE 8 ignores the
border-radius prop-
erty but applies the
rest of the style sheet
. " — properties (bottom).

There’s an obvious appeal to this strategy, because it gives web designers justifica-
tion to play with all the latest technology toys. However, there’s a definite downside
if you go too far. No matter how good a website looks in the latest version of your
favorite browser, it can be deeply deflating if you fire up an older browser that’s used
by a significant slice of your clientele and find that it looks distinctly less awesome.
After all, you want your website to impress everyone, not just web nerds with the
best browsers.

For this reason, you may want to approach some CSS3 enhancements with cau-
tion. Limit yourself to features that are already in multiple browsers (and are at least
promised for IE 10). And don't use them in ways that change the experience of your
website so dramatically that some people are getting second-rate status.

CHAPTER 8: BOOSTING STYLES WITH CSS3

239

Using CSS3 Today

Tip: When it comes to CSS3, Internet Explorer is the straggler. There's a militant minority of web designers
who believe that web designers should ignore IE and start using CSS3 features as soon as other browsers
support them. Otherwise, who will keep pressure on Microsoft and encourage the Web to get better? This
is all well and fine, if the primary purpose of your website is the political one of promoting advanced web
standards. But otherwise, keep in mind that dismissing a large segment of the web world will reflect poorly
on you—because no matter how much you dislike someone’s browser, that person is still using it to look
at your work.

Strategy 3: Add Fallbacks with Modernizr

Using a partially supported CSS3 feature is a great idea if the website still looks great
without it. But sometimes, a vital part of your website design can go missing, or the
downgraded version of your website just looks ugly. For example, consider what
happens if you use the Firefox-only multicolored border settings, as shown in Figure
8-2.

Dig this multicolored border on Firefox. This multicolored border looks

— Figure 8-2:

But it's not so nice on Chrome.

snazzy in Firefox (top). But try
the same thing out in Chrome,
and you'll get a thick, plain black
border (bottom)—and that never
looks good.

240

Sometimes, you can solve the problem by stacking properties in the right order. The
basic technique is to start with more general properties, followed by new proper-
ties that override these settings. When this works, it satisfies every browser—the old
browsers get the standard settings, while the new browsers override these settings
with newer ones. For example, you can use this technique to replace an ordinary
background fill with a gradient:

.stylishBox {

background: yellow;
background: radial-gradient(ellipse, red, yellow);

),
Figure 8-3 shows the result.

HTML5: THE MISSING MANUAL

Using CSS3 Today

page 243.)

Figure 8-3:

Top: In browsers that don’t understand CSS3, the stylishBox
If you see a yellow background, rule paints a yellow background.
you're lingering in the past.

Bottom: In browsers that do understand CSS3, the yellow

: : : background is replaced with a radial gradient that blends from
¥ yousen s radial gradient, youre a red center point to yellow at the edges. (At least, that's the
rocking it, HTMLS style. plan. This example doesn’t work exactly as written, because
the radial-gradient standard is still being revised. To get the
result shown here, you need vendor prefixes, as described on

In some cases, overriding style properties doesn't work, because you need to set
properties in combination. The multicolored border in Figure 8-2 is an example.
The multicolored effect is set with the border-colors property, but appears only if
the border is made thick with the border-thickness property. On browsers that don't
support multicolored borders, the thick border is an eyesore, no matter what single
color you use.

One way to address problems like these is with Modernizr, the JavaScript library
that tests HTML5 feature support (page 38). It lets you define alternate style settings
for browsers that don't support the style properties you really want. For example,
imagine you want to create two versions of the header box shown in Figure 8-1. You
want to use rounded corners if they're supported, but substitute a double-line border
if they aren't. If you've added the Modernizr script reference to your page, then you
can use a combination of style rules, like this:
/* Settings for all headers, no matter what level of CSS3 support. */
header {
background-color: #7695FE;
padding: 10px;
margin: 10px;
text-align: center;

}

CHAPTER 8: BOOSTING STYLES WITH CSS3

24

Using CSS3 Today

/* Settings for browsers that support border-radius. */
.borderradius header {

border: thin #336699 solid;

border-radius: 25px;

}

/* Settings for browsers that don't support border-radius. */
.no-borderradius header {
border: Spx #336699 double;

}
So how does this nifty trick work? When you use Modernizr in a page, you begin by
adding the class="no-js" attribute to the root <html> element:

<html class="no-js">

When you load Modernizr on a page, it quickly checks if a range of HTMLS5, Java-
Script, and CSS3 features are supported. It then applies a pile of classes to the root
<html> element, separated by spaces, changing it into something like this:
<html class="js flexbox canvas canvastext webgl no-touch geolocation
postmessage no-websqldatabase indexeddb hashchange history draganddrop
no-websockets rgba hsla multiplebgs backgroundsize borderimage borderradius
boxshadow textshadow opacity no-cssanimations csscolumns cssgradients
no-cssreflections csstransforms no-csstransforms3d csstransitions fontface
generatedcontent video audio localstorage sessionstorage webworkers
applicationcache svg inlinesvg smil svgclippaths">
If a feature appears in the class list, that feature is supported. If a feature name is
prefixed with the text “no-" then that feature is not supported. Thus, in the example
shown here, JavaScript is supported (js) but web sockets are not (no-websockets).
On the CSS3 side of things, the border-radius property works (borderradius) but
CSS3 reflections do not (no-cssreflections).

You can incorporate these classes into your selectors to filter out style settings based
on support. For example, a selectors like .borderradius header gets all the <header>
elements inside the root <html> element—if the browser supports the border-radius
property. Otherwise, there will be no .borderradius class, the selector won’t match
anything, and the rule won’t be applied.

The catch is that Modernizr provides classes for only a subset of CSS3 features. This
subset includes some of CSS3’s most popular and mature features, but the border-
color feature in Figure 8-2 doesn’t qualify because it’s still Firefox-only. For that rea-
son, it’s a good idea to hold off on using multicolored borders in your pages, at least
for now.

Note: You can also use Modernizr to create JavaScript fallbacks. In this case, you simply need to check
the appropriate property of the Modermizr object, as you do when checking for HTML5 support. You
could use this technique to compensate if you're missing more advanced CSS3 features, like transitions or
animations. However, there's so much work involved and the models are so different that it's usually best
to stick with a JavaScript-only solution for essential website features.

242 HTMLS: THE MISSING MANUAL

Browser-Specific Styles

When the creators of CSS develop new features, they often run into a chicken-and-
egg dilemma. In order to perfect the feature, they need feedback from browser mak-
ers and web designers. But in order to get this feedback, browser makers and web
designers need to implement these new-and-imperfect features. The result is a cycle
of trial and feedback that takes many revisions to settle down. While this process
unfolds, the syntax and implementation of features change. This raises a very real
danger—unknowing web developers might learn about a dazzling new feature and
implement it in their real-life websites, not realizing that future versions of the stan-
dard could change the rules and break the websites.

To avoid this threat, browser makers use a system of vendor prefixes to change CSS
property and function names while they’re still under development. For example,
consider the new radial-gradient property described on page 271. To use it with
Firefox, you need to set the “in progress” version of this property called -moz-radial-
gradient. That's because Firefox uses the vendor prefix -moz- (which is short for
Mozilla, the organization that’s behind the Firefox project).

Every browser engine has its own vendor prefix (Table 8-1). This complicates life
horrendously, but it has a good reason. Different browser makers add support at dif-
ferent times, often using different draft versions of the same specification. Although
all browsers will support the same syntax for final specification, the syntax of the
vendor-specific properties and functions often varies.

Table 8-1. Vendor prefixes
Prefix For Browsers
-moz- Firefox

-webkit- Chrome and Safari
(the same rendering engine powers both browsers)

-ms- Internet Explorer
-0- Opera

So, if you want to use a radial gradient today and support all the browsers you can
(including the forthcoming IE 10), you'll need to use a bloated CSS rule like this one:
.stylishBox {
background: yellow;
background-image: -moz-radial-gradient(circle, green, yellow);
background-image: -webkit-radial-gradient(circle, green, yellow);
background-image: -o-radial-gradient(circle, green, yellow);
background-image: -ms-radial-gradient(circle, green, yellow);
}
In this example, each rule sets the radial gradient using the same syntax. This in-
dicates that the standard is settling down, and browser makers may soon be able to
drop the vendor prefix and support the radial-gradient property directly (as they
currently support corner-radius). However, thisis a fairly recent development, as old
versions of Chrome used completely different gradient syntax.

CHAPTER 8: BOOSTING STYLES WITH CS8S3

Using CSS3 Today

Web Typography

Note: Using vendor prefixes is a messy business. Web developers are split on whether they're a neces-
sary evil of getting the latest and greatest frills, or a big fat warning sign that should scare clear-thinking
designers away. But one thing is certain: If you don't use the vendor prefixes, a fair bit of CSS3 will be
off-limits for now.

Web Typography

With all its pizzazzy new features, it’s hard to pick the best of CSS3. But if you had to
single out just one feature that opens an avalanche of new possibilities and is ready
to use right now, that feature may just be web fonts.

In the past, web designers had to work with a limited set of web-safe fonts. These are
the few fonts that are known to work on different browsers and operating systems.
But as every decent designer knows, type plays a huge role in setting the overall
atmosphere of a document. With the right font, the same content can switch from
coolly professional to whimsical, or from old-fashioned to futuristic.

Note: There were good reasons why web browsers didn't rush to implement custom web fonts. First,
there are optimization issues, because computer screens offer far less resolution than printed documents.
If a web font isn't properly tweaked for onscreen viewing, it'll look like a blurry mess at small sizes. Sec-
ond, most fonts aren't free. Big companies like Microsoft were understandably reluctant to add a feature
that could encourage web developers to take the fonts installed on their computers and upload them to
a website without proper permission. As you'll see in the next section, font companies now have good
solutions for both problems.

CSS3 adds support for fancy fonts with the @font-face feature. Here’s how it works:

1. You upload the font to your website (or, more likely, multiple versions of that
font to support different browsers).

2. You register each font-face you want to use in your style sheet, using the
@font-face command.

3. You use the registered font in your styles, by name, just as you use the web-safe
fonts.

4. When a browser encounters a style sheet that uses a web font, it downloads the
font to its temporary cache of pages and pictures. It then uses that font for just
your page or website (Figure 8-4). If other web pages want to use the same font,
they’ll need to register it themselves and provide their own font files.

Note: Technically, @font-face isn't new. It was a part of CSS 2, but dropped in CSS 2.1 when the browser
makers couldn't cooperate. Now, in CSS3, there's a new drive to make @font-face a universal standard.

The following sections walk you through these essential steps.

HTMLS: THE MISSING MANUAL

Web Typography

Zero & Zero Is Impact Label Reversed Regular Figure 8-4:
This revised version

§ S R @‘ of the apocalyptic
|01 Apocalypse Now < NGy 2= ' = page combines a

& & C | O files//C/HTMLS/Chapter%2008/FontTest/ApocalypsePage_Revised.htm a8|| hodgepodge of four

= — e fonts. All of these

~i| fonts are free, and

you'll learn how to

get them for yourself

from Font Squirrel on

page 247.

| ——RiGHT NOW, you're probably feeling pretty good. Afterall, Iife in the developed
world is comfortable-probably more comfortable than it's been forthe average
human being throughout all of recorded history.

Butdon't get too smug. There's still plenty of
horrific ways It could all fall apart. In this article,
you'lllearn about a few of our favorites

Skeptics suggest that the Mayan calendar simply
rollstoanew5,126-year era after2012, and
doesn'tactually predictaiife-ending

apocalupse. But giventhatthe long-dead Wil yoclbe thie lost person standing
Mayans were wrong aboutvirtually everuthing Noneo] e apocakplic
scenarios plays out?

else, why should we trust them on this?

Notquite as frightening as a Vampire Takeoveror Living- Dead Takeover. arobot
rebellionis still adisquieting thought. We are already outnumbered bu our
technological gadgets, and even Bill Gates fears the day his Japaneserobot slave
tums him over by the ankles and asks (In a sultably robotic voice) "Wha's your

Impact Label Regular
Metrophobia

Web Font Formats

Although all current browsers support @font-face, they don’t all support the same
types of font files. Internet Explorer, which has supported @font-face for years, sup-
ports only EOT (Embedded OpenType) font files. This format has a number of
advantages—for example, it uses compression to reduce the size of the font file, and
it allows strict website licensing so a font can’t be stolen from one website and used
on another. However, the .eot format never caught on, and no other browser uses
it. Instead, other browsers have (until recently) stuck with the more familiar font
standards used in desktop computer applications—that’s TTF (TrueType) and OTF
(OpenType PostScript). But the story’s still not complete without two more acro-
nyms—SVG and WOFE. Table 8-2 puts all the font formats in perspective.

CHAPTER 8: BOOSTING STYLES WITH CSS3 245

Web Typography

Table 8-2. Embedded font formats

Format Description Use with
TTF (TrueType) Your font will probably begin in Firefox (before version 3.6),
OTF (OpenType one of these common desktop Chrome (before version 6),

PostScript) formats.

Safari, and Opera

EOT (Embedded Open A Microsoft-specific format that Internet Explorer (before IE 9)
Type) never caught on with browsers
except Internet Explorer.

SVG (Scalable Vector An all-purpose graphics format Safari Mobile (on the iPhone

Graphics) you can use for fonts, with good and iPad before i0S 4.2),
but not great results (it's slower and mobile devices using the
to display and produces lower- Android operating system.
quality text).
WOFF (Web Open The single format of the future, Any browser that supports i,
Font Format) probably. Newer browsers starting with Internet Explorer 9,
support it. Firefox 3.6, and Chrome 6.

Bottom line: If you want to use the @font-face feature and support a wide range of
browsers, you need to distribute your font in several different formats. At a mini-
mum, you need to supply your font in TTF or OTF format (either one is fine), the
EOT format, and the SVG format. It’s a good idea (but not essential) to also supply
a WOFF font, which is likely to become more popular and better supported in the
future. (Among its advantages, WOFF files are compressed, which minimizes the

download time.)

TROUBLESHOOTING MOMENT

roning Out the Quirks

Even if you follow the rules and supply all the required font
formats, expect a few quirks. Here are some problems that
occasionally crop up with web fonts:

« Many fonts look bad on the still-popular Windows XP
operating system, because Windows XP computers
often have the anti-aliasing display setting turned off.
(And fonts without anti-aliasing look as attractive as
mascara on a mule.)

« Some people have reported that some browsers (or
some operating systems) have trouble printing cer-

a few seconds to download, and the page is rendered
first using a fallback font, and then re-rendered us-
ing the embedded font. This problem is most notice-
able on old builds of Firefox. If it really bothers you,
Google provides a JavaScript library that lets you de-
fine fallback styles that kick in for unloaded fonts, giv-
ing you complete control aver the rendering of your
text at all times (see http;/code.google.com/apis/
webfonts/docs/webfont_loader.html).

Although these quirks are accasionally annoying, most are

tain embedded fonts. being steadily ironed out in new browser builds. For ex-

« Some browsers suffer from a problem known as
FOUT (which stands for Flash of Unstyled Text). This
phenomenon occurs when an embedded font takes

ample, Firefox now minimizes FOUT by waiting for up to
3 seconds to download an embedded font before using
the fallback font.

246

HTMLS: THE MISSING MANUAL

Using a Font Kit

Web Typography

At this point, you're probably wondering where you can get the many font files you
need. The easiest option is to download a ready-made font kit from the Web. That
way, you get all the font files you need. The disadvantage is that your selection is
limited to whatever you can find online. One of the best places to find web font kits
is the Font Squirrel website; you can see its handpicked selection at www.fontsquirrel.

com/fontface (see Figure 8-5).

Font category Figure 8-5:
Font Squirrel provides
Font Squirrel | Download Hundreds of Free @font-face Fonts - Mozilla Firsfox o e) feM[hundred high-
Bookmars ool oy quality fonts, orga-
Q i oy — e e e a—i nlledlnto .'J:ectlons by
B I - 9% N type (“Calligraphic,”
Joad Hundreds o... | + | o e . “Grunge,” and
L T Sl A e = Z|| “Retro,” for example).
rrew Fot | Vi @ Dems | Gut Kit Best of all, every
Senda HaB6E 0 font is free to use
; L wherever you want—
T |
computer to create
, s o documents, or on the
RO s Amll Derma | Gat it n?rmn L’Iu:'é;] | Gt Kt G::“I‘svo - P;'l*_—,m | Gt Kt Web to build web
Chantelli Antiqua Florante at L Gordola SD AaBb pages. When you find
a font you like, click
View Font to get a
Gothic Uttra OT | 1 Fort Kells 50| 1F=nt . Kingthings Caliigraphica | 3 Fonts closer look at every
: ""-1 s @ Dams | Get Kit View Fant | .y:.;:A“ Dems | Gat Kit i HT Font |'» ow @ _m.v | Get m: letter, ”VieW @ff
Gothic Ultra OT Aa kells so abcder Kingthings Calligraphica Demo” to see the font
in a sample web page
y ! _ via the @font-face
"fm""gﬁ ?:.mgln‘ :r:::‘; | Gut Kit wllf?s | Fl:u:“@':ve;-iu‘: T’:::u it Kf??w:gs' le::: g-x it feanIC, and "Get Kit"
Kingthings Exeter Aa i (- #xesvr4>> Kingthings founda to download the font
— . — — i S to your computer.
L—aane
Links to preview or download a font

When you download a font kit, you get a compressed Zip file that contains a number
of files. For example, download the Chantelli Antiqua font shown in Figure 8-5, and
you get these files:

Bernd Montag License.txt
Chantelli Antiqua-webfont.eot
Chantelli Antiqua-webfont.svg
Chantelli_Antiqua-webfont.ttf
Chantelli Antiqua-webfont.woff
demo. html

stylesheet.css

CHAPTER 8: BOOSTING STYLES WITH CS53 247

Web Typography

248

The text file (Bernd Montag License.txt) provides licensing information that basi-
cally says you can use the font freely, but never sell it. The Chantelli_Antiqua-web-
font files provide the font in four different file formats. (Depending on the font you
pick, you may get additional files for different variations of that font—for example,
in bold, italic, and extra-dark styles.) Finally, the stylesheet.css file contains the style
sheet rule you need to apply the font to your web page, and demo.html displays the
font in a sample web page.

To use the Chantelli Antiqua font, you need to copy all the Chantelli_Antiqua-
webfont files to the same folder as your web page. Then you need to register the font
so that it’s available for use in your style sheet. To do that, you use a complex @font-
face rule at the beginning of your style sheet, which looks like this (with the lines
numbered for easy reference):

1 @font-face {

2 font-family: 'ChantelliAntiquaRegular';

3 src: url('Chantelli_Antiqua-webfont.eot');

4 src: local('Chantelli Antiqua'),

5 url('Chantelli Antiqua-webfont.woff') format('woff'),

6 url('Chantelli Antiqua-webfont.ttf') format('truetype'),
7 url('Chantelli Antiqua-webfont.svg') format('svg');

8 }

To understand what's going on in this rule, it helps to break it down line by line:

« Line 1: @font-face is the tool you use to officially register a font so you can use
it elsewhere in your style sheet.

« Line 2: You can give the font any name you want. This is the name you'll use
later, when you apply the font.

« Line 3: The first format you specify has to be the file name of the EOT file. That's
because Internet Explorer gets confused by the rest of the rule, and ignores the
other formats. The url() function is a style sheet technique that tells a browser
to download another file at the location you specify. If you put the font in the
same folder as your web page, then you can simply provide the file name here.

« Line4: The next step is to use the local() function. This function tells the brows-
er the font name, and if that font just happens to be installed on the visitor’s
computer, the browser uses it. However, in rare cases this can cause a problem
(for example, it could cause Mac OS X to show a security dialog box, depending
on where your visitor has installed the font, or it could load a different font that
has the same name). For these reasons, web designers sometimes use an obvi-
ously fake name to ensure that the browser finds no local font. One common
choice is to use a meaningless symbol like local('©).

« Lines 5 to 7: The final step is to tell the browser about the other font files it can

use. If you have a WOFF font file, suggest that first, as it offers the best quality.
Next, tell the browser about the TTF or OTF file, and finally about the SVG file.

HTML5: THE MISSING MANUAL

Web Typography

Tip: Of course, you don't need to type the @font-face rule by hand (and you definitely don't need to
understand all the technical underpinnings described above). You can simply copy the rule from the
stylesheet.css file that's included in the web font kit.

Once you register an embedded font using the @font-face feature, you can use it in
any style sheet. Simply use the familiar font-family property, and refer to the font
family name you specified with @font-face (in line 2). Here’s an example that leaves
out the full @font-face details:

@font-face {
font-family: 'ChantelliAntiquaRegular’;

}...

body {
font-family: 'ChantelliAntiquaRegular';

}
This rule applies the font to the entire web page, although you could certainly re-
strict it to certain elements or use classes. However, you must register the font with
@font-face before you use it in a style rule. Reverse the order of these two steps, and
the font won't work properly.

Tip: The Font Squirrel website provides more fonts beyond its prepackaged font kits. You can also find
more fonts by looking at the list of most popular fonts (click Most Downloaded) and most recent (click
Newly Added). In these lists, you'll find the web fort kits along with other free font files that don't have
the support files or need to be downloaded from another website. You can convert your font to the other
formats you need using Font Squirrel’s font-kit generator, as described on page 252.

FREQUENTLY ASKED QUESTION

Using a Font on Your Computer

Can | use the same font for web work and printed documents? ~ Modern Windows and Mac computers support TrueType
() and OpenType (.otf) fonts. Every font package in-
cludes a font in one of these formats—usually, TrueType.
To install it in Windows, make sure you've pulled it out of
the ZIP download file. Then, right-click it and choose In-
stall. (You can do this with multiple font files at once.) Ona
Gl Mac, double-click the font file to open the Font Book utility.
E Then, click the Install Font button.

If you find a hot new font to use in your website, you can
probably put it to good use on your computer, too. For ex-
ample, you might want to use it in an illustration program
to create a logo. Or, your business might want to use it
for other print work, like ads, fliers, product manuals, and

CHAPTER 8: BOOSTING STYLES WITH CSS3 249

Web Typography

Using Google Web Fonts

If you want a simpler way to use a fancy font on your website, Google has got you
covered. It provides a service called Google Web Fonts, which hosts free fonts that
anyone can use. The beauty of Google Web Fonts is that you don't need to worry
about font formats, because Google detects the browser and automatically sends the

right font file.
To use a Google font in your pages, follow these steps:

1. Go to www.google.com/webfonts.
Google shows you a long list of available fonts (Figure 8-6).

2. At the top of the page, click a tab title (Word, Sentence, or Paragraph) to
choose how you preview fonts.

For example, if you're hunting for a font to use in a heading, you’ll probably
choose Word or Sentence to take a close up look at a single word or line of text.
But if you're looking for a font to use in your body text, you'll probably choose
Paragraph to study a whole paragraph of text at once. No matter what option
you choose, you can type in your own preview text and set an exact font size for

your previews.

Filters:
(Al categocizs -

Any thickness

| 0 font families in your Collection =

Rosarlo_ ! Style by Hector Gatty B uchuszs P Popaut

Filter the list Cet your font

Sort the list Figure 8-6:
> - Google has a relent-
P coogewes Fonts == lessly expanding se-
€« C O www google;ar;m ~x~ SN fr X lection offqnts. When
, || you're looking for a
Google web fonts {5 e aossiest 1o ss o war || font, you'll probably
‘ = || want to tweak the font
Showing Wiers Sentence Purigrssh s Baakmare your Calisction pfawnioad your CalS Il IISt'S So(ﬁng and filter-
Prevew Tex rumpy wizards make tax Saze: 28|~ i Trendin;
206 e kel ol
font families Date added [\ -
e Mol detites || sort alphabetically or
Sanechs Grumpy wizards make toxic brew fog th: " en / | putthe most popular
opderky fonts first, and you
can filter out just

serif, sans-serif, or
handwritten (cursive)
fonts.

250 HTMLS: THE MISSING MANUAL

Web Typography

3. Set your search options.

If you have a specific font in mind, type it into the search box. Otherwise, you'll
need to scroll down, and that could take ages. To help you get what you want
more quickly, start by setting a sort order and some filtering options, if they
apply (for example, you might want to find the most popular bold sans-serif
fonts). Figure 8-6 shows you where to find these options.

4. When you see a font that’s a candidate for your site, click “Pop out”

Google pops open an informative window that describes the font and shows
each of its characters.

5. If you like the font, click “Quick-use” to get the information you need to use
it.

Google shows you the code you need to use this font. It consists of a style sheet
link (which you must add to your web page) and an example of a style sheet rule
that uses the font.

6. Add a style sheet link to your web page.

For example, if you picked the Metrophobic font, Google wants you to place this
link in the <head> section of your page:
<link href="http://fonts.googleapis.com/css?family=Metrophobic”
rel="stylesheet">
This style sheet registers the font, using @font-face, so you don’t have to. Best
of all, Google provides the font files, so you don't need to upload anything extra
to your website.

Note: Remember to put the link for the Google font style sheet before your other style sheet links. That
way, your other style sheets can use the Google font.

7. Use the font, by name, wherever you want.

For example, here’s how you could use the newly registered Metrophobic font
in a heading, with fallbacks in case the browser fails to download the font file:

h1 {
font-family: 'Metrophobic', arial, serif;

}

CHAPTER 8: BOOSTING STYLES WITH CSS3 251

Web Typography

POWER USER’S CLINIC

Creating a Font Collection

These steps show the fastest way to get the markup you
need for a font. However, you can get more options by
creating a font collection.

A font collection is a way to package up multiple fonts. To
start creating one, you simply dlick the “Add to Collection”
button next to & font you like. As you add fonts to your
collection, each one appears in the fat blue footer at the
bottom of the page.

similar to the “Quick-use” page, except it allows you to cre-
ate a single style sheet reference that supports all the fonts
from your custom-picked collection.

When you create a font collection, you can also use two
links that appear at the top-right of the page. Click “Book-
mark your Collection” to create a browser bookmark that
lets you load up the same collection at some point in the
future, so you can tweak it. Choose “Download your collec-

tion" to download copies of the fonts to your computer, so

When you're finished picking the fonts you want, click the you can install the fonts and use them for print work,

footer's big Use button. Google then shows a page that's

Using Your Own Fonts

Font fanatics are notoriously picky about their typefaces. If you have a specific font
in mind for your web pages, even the biggest free font library isn't enough. Fortu-
nately, there’s a fairly easy way to adapt any font for the Web. Using the right tool, you
can take a TTF or OTF font file you already have and create the other formats you
need (EOT, SVG, and WOFF).

But before you take this road, it's important to get one issue out of the way: Ordinary
fonts aren’t free. That means it's not kosher to take a font you have on your com-
puter and use it on your website, unless you have explicit permission from the font's
creator. For example, Microsoft and Apple pay to include certain fonts with their
operating systems and applications so you can use them to, say, create a newsletter
in a word processor. However, this license doesn't allow you to put these fonts on a
web server and use them in your pages.

Tip: If you have a favorite font, the only way to know whether you need to pay for it s to contact the
company or individual that made it. Some font makers charge licensing fees based on the amount of
traffic your website receives. Other font creators may let you use their fonts for a nominal amount or for
free, provided you meet certain criteria (for example, you include some small-print note about the font
you're using, or you have a noncommercial website that isn't out to make boatloads of money). There's
also a side benefit to reaching out; Skilled font makers often provide display-optimized versions of their
creations.

252 HTML5: THE MISSING MANUAL

Web Typography

Once you know that you're allowed to use a specific font, you can convert it using a
handy tool from Font Squirrel (the same website that offers the nifty free web font
kits). To do so, surf to www.fontsquirrel.com/fontface/generator. Figure 8-7 shows
you the three-step process you need to follow.

(8 Font Squirrel | Create Your Own @font-face Kits - Windows Internet Explorer e Hgm.8-7:

@Jr\. — — —— - First, click Add Fonts
e e i il T to upload a font file

iy Favorites | Font Squinel | Create Your Own @font-faceKits | (3 ~ #h v Pagev Safety~ Tools~ from your computer.

= — Then, add a check-

-

x|

mark to the setting

“Yes, the fonts I'm

% uploading are legally
eligible for web em-

EI fll © Addonts | bedding" (assuming

you've reviewed their

| Anaroni Bold TIF 243ghphs 49KB Aot Fstio 045 e | license requirements,

! — | as described on page
& Basic @ OPTIMAL) EXPERT... 252) Fina”y, d/ck
Resommended settmgs i Yoo aciie frow bast 1o Download Your Kit.

| = petlcemances snd jpee

Agreement: [yes, the fonts rm uplosding sre legally eligible for web embedding
e S s e e > = B0k o s Rk

w0 |1 good leith. Plesse = EUt

| sk i , | Download Your Kit@ |

L Ty S 535

ﬂoMacngmtor/dm & & Internet | Protected Mode: On

The web kit that Font Squirrel generates is just like the free ones described earlier.
It even includes a style sheet that has the @font-face section you need, along with a
test web page.

Tip: Still looking for more places to get fonts? If you haven't found that perfect typeface yet, spend some
time at httpy//webfonts.info. There you'll find links to other websites that provide free fonts, as well as
professional font foundries like the legendary Monotype. Although font-pricing models are changing fast,
most font foundries offer some free fonts, and paid subscriptions can give website developers dozens of
ultra-high-quality typefaces for as little as $10 per year. Some provide fonts through a hosting service like
Google Fonts, so there's no need to upload font files to your web server.

Putting Text in Multiple Columns

Fancy fonts aren’t the only innovation CSS3 has for displaying text. It also adds an
entirely new module for multicolumn text, which gives you a flexible, readable way
to deal with lengthy content.

CHAPTER 8: BOOSTING STYLES WITH CSS3 253

Web Typography

Using multiple columns is almost effortless, and you have two ways to create them.
Your first option is to set the number of columns you want using the column-count
property, like this:
article {
text-align: justify;
column-count: 3;
}
At the time of this writing, this works for Opera only. To get the same support in
Firefox, Chrome, and Safari, you need to add vendor-prefixed versions of the column-
count property, like this:
article {
text-align: justify;
-moz-column-count: 3;

-webkit-column-count: 3;
column-count: 3;

}
You won't find any support in Internet Explorer 9 (although IE 10 is likely to join
the party).

This approach—creating a set number of columns—works well for fixed-size lay-
outs. But if you have a space that grows and shrinks with the browser window, your
columns may grow too wide and become unreadable. In this situation, it's better not
to set the exact number of columns. Instead, tell the browser how big each column
should be using the column-width property:

article {
text-align: justify;
-moz-column-width: 10em;
-webkit-column-width: 10em;
column-width: 10em;

}

The browser can then create as many columns as it needs to fill up the available
space (see Figure 8-8).

Note: You can use pixel units to size a column, but em units make more sense. That's because em units
adapt to the current font size. So if a web page visitor ratchets up the text size settings in her browser, the
column width grows proportionately to match. To get a sense of size, 1 em is equal to the two times the
current font size. So if you have a 12 pixel font, 1 em works out to 24 pixels.

You can also adjust the size of the spacing between columns (with column-gap) and
even add a vertical line that separates them (with column-rule). For more informa-
tion about all your column-creating options, including ways to control where text
breaks into columns and tricks that let figures and other elements span columns, re-
fer to the full multicolumn standard at www.w3.0rg/TR/css3-multicol. Unfortunately,
at this writing no browser supports these advanced features.

HTMLS: THE MISSING MANUAL

Adapting to

Different Devices

our lavontes - ﬂg"n c.a:

In a narrow window (top), Firefox can accommo-
date just one column. But widen the window, and
you'll get as many more as can fit (bottom).

Skeptics suggest that the Magan
calendar simply toils to & new
S26-year ea after 2012, and
dnasn't actuslly predict a
Ide-ending spocalypss Bul gwen
that the long-desd Mayans wese
wrong sbout virtually evenything
elsa why should we trust them on
this¥

| Not guie as fighlenng a3 &8
| Vampus Takecwer or Uving-Dead
| Takecver, a mbot rebelilon is still &
| disquicting thought. We are already
| cuthumbsead by our technological
| gadgets, and sven Bill Gatas fears

the day his Japaness wcbot slave

turms hm over by the ankles and
| asks (0 & suitably obolic voice)
| “Who's your daddy now?”

o6 We don't know how the
universe started, so wecan't

o1 S UL e) T O T I

by our technologice! storms, widespread food

WA Yo e the l33t persan stanceng
¢ ane of thess apocaysuc
FeangTes pays out”

But don't get too smug
There's sull plenty of
homific ways it could all
fall apart In this article.
wou'll Team about & few
of our favorites

godgets, and even Bill
Gates fears the day his
lapanese robot slave
tums him over by the
enkles and esks (in a
suitably rchote voice)
“Wha's your daddy now?"

shortages, and surly aw
conditioning repairmen

Some Lime In the fiture,
& lethal wvius could
strike. Pred differ

6 e don't know
how the umverse
started, so we
cant be sure it

shout the source of the
disease, but candidates
includa monkeys m the
Afrscan Jungle,
bioterrorists, birds and

Y pigs with the fiu, warmnors
wont- just. end from the future, an alien
Skeptics suggest that maybe (odai. ¢y race. hospitals thet use
the Magan calendy — ————— o, many antibiotics,
simply tolis 1o a new vempirez. the CIA and
5.126-year era after 2012 unwashed brussel
and doesn’t actunily sproute. Whatever the
predict a lfe-ending We don't know how the soece it's clearly bad
spocniypse But pgiven universe started, S0 we paws
‘ that the long-dead can't be sum it won't just

S0as i Daswre Sasant i
Sy e =

Adapting to Different Devices

If you've ever gone on an extended web surfing spree using a mobile device (and
odds are you have), you've discovered that a tiny screen isn't the best window onto
the Web. Sure, you can scroll and zoom your way around virtually any website, but
the process is often laborious. Life gets much better if you find a specifically de-
signed mobile site that scales down its content to fit your device.

Today, it's not unusual to find developers creating custom versions of the same web-
site for specific devices, like iPhones and iPads. These sites are often hosted on
different web domains (like http://m.nytimes.com for the mobile version of the New
York Times). But here’s the rub: As mobile browsing becomes more popular, and
mobile devices become increasingly numerous and varied, web developers like you
can end up with big headaches managing all those device-specific sites.

CHAPTER 8: BOOSTING STYLES WITH CS§S3 255

Adapting to

Different Devices

Of course, separate sites aren’t the only way to deal with different devices. You can
also write web server code that checks every request, figures out what web browser
is on the other end, and sends the appropriate type of content. This sort of solution is
great, if you have the time and skills. But wouldn't it be nice to have a simple mecha-
nism that tweaks your styles for different types of devices, with no web application
framework or server-side code required?

Enter media queries. This CSS3 feature gives you a simple way to vary styles for dif-
ferent devices and viewing settings. Used carefully, they can help you serve every-
thing from an ultra-widescreen desktop computer to an iPhone—without altering a
single line of HTML.

Media Queries

Media queries work by latching onto a key detail about the device that’s viewing your
page (like its size, resolution, color capabilities, and so on). Based on that informa-
tion, you can apply different styles, or even swap in a completely different style sheet.
Figure 8-9 shows a media query in action.

NOSTALGIA CORNER

CSS Media Types

Interestingly, the creators of CSS took a crack at the multi- ~ The media attribute also accepts the value handheld, which
ple-device problem in CSS 2.1, using a feature called media is meant for low-bandwidth, small-screen mobile devices.
types. You might already be using this standard to supplya ~ Most mobile devices make some attempt to pay attention
separate style sheet for printouts: to the media attribute and use the handheld style sheet, if it
exists. But there are quirks aplenty, and the media attribute

<head> y t et :

e is woefully inadequate for dealing with the wide range of

¢!-- Use this stylesheet to display the web-connected devices that exists today. (However, it's still
page on-screen. --> a good way to clean up printouts,)

<link rel="stylesheet" media="screen"
href="styles.css">

¢l-- Use this stylesheet to print the
page. -=>
<link rel="stylesheet" media="print"
href="print styles.css">
</head>

To use media queries, you must first choose the property you want to examine. In
Figure 8-9, that key detail is max-width, which gets the current size of the page,
in the browser window. Even more useful is max-device-width, which checks the
maximum screen width. If this value is small, it’s clear that you're working with a
webphone or a similarly tiny device.

The easiest way to use media queries is to start with the standard version of your
website, and then override it selectively. In the example in Figure 8-9, the content is
broken into two sections:

256 HTMLS: THE MISSING MANUAL

<article>
</article>
<aside>

</aside>

Adapting to

Different Devices

a i "

(=1 i

N : o = wish i
1 [E) CAHTMLS\Chapter 08\MediaQueries.htmi

C p.ex| @

= Mediz Quenes

1‘\
"Lﬁf

pharetra convallis, dolor est commodo diam, at
| pellentesque mauris nibh convallis nulla.
Pellentesque non lorem augue, id adipiscing

turns this into
a pink footer
when the

Figure 8-9:

Here’s the same page viewed in a
wide browser window (top) and in a
narrow browser window (bottom).
The media query magic automatically

This region represents the main content. In This region switches a portion of the page’s style

tl:is IIayout, it uses a fixed width of 330. represents the rules when the window shrinks, turn-

poSSCHeS et SmOis et e ing a sidebar into a footer. You don't
is leftover on even need to refresh the page.

Lorem ipsum dolor sit amet, consectetur the right side. 1

adipiscing elit, In condimentum, nunc sit amet A media query |

browser
window shrinks
down.

odio. Cras arcu magna, lobortis eu mollis iaculis,
mattis ut est. Donec semper varius augue,
euismod rutrum tellus dapibus at. Pellentesque
vitae ante in nisi viverra aliquet vel et turpis. In
hac habitasse platea dictumst. Nulls scelerisque
malesuada ultricies. Vivamus suscipit massa
quis sapien facilisis auctor. Mauris nec sem sit
amet elit ultricies suscipit in quis ante. Donec
mollis neque vel massa pharatra consequat.

¢ ~_§i}{;,,|| &) CAHTMLS\Chapter 08\MediaQueriesh © ~ & X | (a} 77 &35
2 Media Queries x u = ;
This region represents the main content. In this

layout, it uses a fixed width of 330 pixels. Here is
some sample text to make it seem more realistic:

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
In condimentum, nunc sit amet pharetra convallis, dolor
est commodo diam, at pellentesque mauris nibh
convallis nulla. Pellentesque non lorem augue, id
adipiscing odio. Cras arcu magna, lobortis eu mollis
iaculis, mattis ut est. Donec semper varius augue, |
euismod rutrum tellus dapibus at. Peilentesque vitae 1
ante in nisi viverra aliquet vel et turpis. In hac habitasse
platea dictumst. Nulla scelerisque malesuada ultricies. |
Vivamus suscipit massa quis sapien facilisis auctor. .i
Mauris nec sem sit amet elit ultricies suscipit in quis
ante. Donec mollis neque vel massa pharetra consequat.

CHAPTER 8: BOOSTING STYLES WITH CSS3 257

Adapting to

Different Devices

And the style sheet starts with two rules, one for each section:
article {
border: solid 1px black;
padding: 15px;
margin: 5px;
background: yellow;
float: left;
width: 330px;
}

aside {
border: solid 1px black;
padding: 15px;
margin: 5px;
background: yellow;
position: absolute;
float: left;
margin-left: 370px;
1
These rules implement a standard two-column layout, with a fixed 330-pixel column
on the left, and a sidebar on the right that expands to fill up the remaining space.
(Of course, you're free to use any sort of CSS-powered layout you want in your

examples.)

The magic happens when you define a separate part of your style sheet that comes
into effect for a given media-query value. The syntax takes this form:

@media (media-query-property-name: value) {

/* New styles go here. */

}
In the current example, this new set of styles comes into effect when the width of the
browser window is 480 pixels or less. That means you need a section in your style
sheet that looks like this:

@media (max-width: 480px) {

}...

Tip: Right now, the most popular media queries are max-device-width (for creating mobile versions of
your pages), max-width (for varying styles based on the current size of the browser window), and orienta-
tion (for changing your layout based on whether an iPad is turned horizontally or vertically). But the
media queries specification defines a handful of other details you can examine. For the full list, check out
the standard at www.w3.0rg/TR/css3-mediaqueries.

Although you're free to put anything inside the media query block, this example
simply adds new style rules for the <article> and <aside> elements:
@media (max-width: 480px) {
article {
float: none;
width: auto;

}

HTMLS: THE MISSING MANUAL

aside {
position: static;
float: none;
background: pink;
margin-left: 5px;
}
}
These styles are applied in addition to the normal styles you've already defined.
Thus, you may need to reset properties you've already changed to their default val-
ues. In this example, the media query styles reset the position property to stafic, the
float property to none, and the width property to auto. These are the default values,
but the original sidebar style changed them.

Note: Browsers that don't understand media queries, like Internet Explorer 8, will simply ignore these
new styles and keep applying the original styles, no matter how big or small the browser window
becomes.

If you want, you could add another media query section that overrides these rules
at a still-smaller size. For example, this section would apply new rules when the
browser width creeps under 250 pixels:

@media (max-width: 250px) {

}
Just remember that these rules are overriding everything that’s been applied so far—
in other words, the cumulative set of properties that have been set by the normal
styles and the media query section for under 450 pixels. If this seems too confusing,
don’t worry—you'll learn to work around it with more tightly defined media queries
in the next section.

Tip: When trying to identify mobile devices like webphones, you need to use the max-device-width
property, not max-width. That's because the max-width property uses the size of the phone’s viewport—
the segment of the web page that the phone user can scroll around. A typical viewport is twice as wide as
the actual device width. For the full scoop (and some pictures that illustrate how viewports work), see the
Quirksmode article at http;//tinyurl.com/yyec93n. And you'll learn more about media queries for mobile
devices on page 261.

More Advanced Media Queries

Sometimes you might want your styles even more specific, so that they depend on
multiple conditions. Here’s an example:

@media (min-width: 400px) and (max-width: 700px) {
/* These styles apply to windows from 400 to 700 pixels wide. */

}

CHAPTER 8: BOOSTING STYLES WITH CSS3

Adapting to

Different Devices

259

Adapting to

Different Devices

This comes in handy if you want to apply several sets of mutually exclusive styles,
but you don’t want the headaches of several layers of overlapping rules. Here’s an
example:

/* Normal styles here */

@media (min-width: 600px) and (max-width: 700px) {
/* Override the styles for 600-700 pixel windows. */
}

@media (min-width: 400px) and (max-width: 599.99px) {
/* Override the styles for 400-600 pixel windows. */

}

@media (max-width: 399.99px) {
/* Override the styles for sub-400 pixel windows. */

}
Now, if the browser window is 380 pixels, exactly two sets of style will apply: the
standard styles and the styles in the final @media block. Whether this approach
simplifies your life or complicates it depends on exactly what you're trying to ac-
complish. If you're using complex styles and changing them a lot, the no-overlap
approach shown here is often the simplest way to go.

Notice that you have to take care that your rules don't unexpectedly overlap. For
example, if you set the maximum width of one rule to 400 pixels and the minimum
width of another rule to 400 pixels, you'll have one spot where both style settings
suddenly combine. The slightly awkward solution is to use fractional values, like the
399.99 pixel measurement used in this example.

Another option is to use the not keyword. There’s really no functional difference, but
if the following style sheet makes more sense to you, feel free to use this approach:
/* Normal styles here */

@media (not max-width: 600px) and (max-width: 700px) {
/* Override the styles for 600-700 pixel windows. */

t

@media (not max-width: 400px) and (max-width: 600px) {
/* Override the styles for 400-600 pixel windows. */

}

media (max-width: 400px) {
/* Override the styles for sub-400 pixel windows. */

}
In these examples, there’ still one level of style overriding to think about. That's be-
cause every @media section starts off with the standard, no-media-query style rules.
Depending on this situation, you might prefer to separate your style logic completely
(for example, so a mobile device gets its own, completely independent set of styles).
To do so, you need to use media queries with external style sheets, as described next.

260 HTML3: THE MISSING MANUAL

Replacing an Entire Style Sheet

If you have simple tweaks to make, the @media block is handy, because it lets you
keep all your styles together in one file. But if the changes are more significant, you
may decide that it’s just easier to create a whole separate style sheet. You can then use
a media query to create a link to that style sheet:

<head>
<link rel="stylesheet" href="standard styles">
<link rel="stylesheet" media="(max-width: 480px)" href="small styles.css">

</Aé;d>
The browser will download the second style sheet (small_styles.css) with the page but
won't actually apply it unless the browser width falls under the maximum.

As in the previous example, the new styles will override the styles you already have
in this place. In some cases, what you really want is completely separate, indepen-
dent style sheets. First, you need to add a media query to your standard style sheet,
to make sure it kicks in only for large sizes:

<link rel="stylesheet" media="(min-width: 480.01px)" href="standard styles">

<link rel="stylesheet" media="{(max-width: 480px)" href="small styles.css">
The problem with this approach is that browsers that don’t understand media que-
ries will ignore both style sheets. You can fix this up for old versions of Internet
Explorer by adding your main style sheet again, but with conditional comments:

<link rel="stylesheet" media="(min-width: 480.01px)" href="standard_styles">

<link rel="stylesheet" media="(max-width: 480px)" href="small styles.css">

<!--[if 1t IE 9]>

<link rel="stylesheet" href="standard styles">

<![endif]-->
This example still has one small blind spot. Old versions of Firefox (earlier than 3.5)
don’t understand media queries and don’t use the conditionally commented IE sec-
tion. You could solve the problem by detecting the browser in your code, and then
using JavaScript to swap in a new page, but it's messy. Fortunately, old versions of
Firefox are becoming increasingly rare.

Incidentally, you can combine media queries with the media types described in the
box on page 256. When doing this, always start with the media type, and don't put it
in parentheses. For example, here’s how you could create a print-only style sheet for
a specific page width:
<link rel="stylesheet" media="print and (min-width: 25cm)"
href="NormalPrintStyles.css" >
<link rel="stylesheet" media="print and (not min-width: 25cm)"
href="NarrowPrintStyles.css" >

Recognizing Mobile Devices

As you've already learned, you can distinguish between normal computers and mo-
bile devices by writing a media query that uses max-device-width. But what widths
should you use?

CHAPTER 8: BOOSTING STYLES WITH CSS3

Adapting to

Different Devices

261

Adapting to

Different Devices

262

If you're looking for mobile phones, check for a max-device-width of 480 pixels.
This is the best, more general rule. It catches the iPhone and the Android phones
that exist today:
<link rel="stylesheet" media="(max-device-width: 480px)"
href="mobile styles.css">
If you're a hardware geek, this rule may have raised a red flag. After all, the current
crop of mobile devices uses tiny, super-high-resolution screens. For example, the
iPhone 4 crams a grid of 960 x 640 pixels into view at once. You might think youd
need larger device widths for these devices. Surprisingly, though, that isn’t the case.
Most web devices continue reporting that they have 480 pixels of width, even when
they have a fancy high-resolution display. These devices add in a fudge factor called
the pixel ratio. In the iPhone 4, for instance, every CSS pixel is two physical pixels
wide, so the pixel ratio is 2. In fact, you can create a media query that matches the
iPhone 4, but ignores older iPhones, using the following media query:
<link rel="stylesheet"
media="(max-device-width: 480px) and (-webkit-min-device-pixel-ratio: 2)"
href="iphone4.css">
The iPad poses a special challenge: Users can turn it around to show content ver-
tically or horizontally. And although this changes the max-width, it doesn't alter
the max-device-width. In both portrait and landscape orientation, the iPad reports
a device width of 768 pixels. Fortunately, you can combine the max-device-width
property with the orientation property if you want to vary styles based on the iPad’s
orientation:

<link rel="stylesheet"
media="(max-device-width: 768px) and (orientation: portrait)"
href="iPad_portrait.css">

<link rel="stylesheet"
media="(max-device-width: 768px) and (orientation: landscape)”
href="iPad_landscape.css">
Of course, this rule isn't limited to iPads. Other devices that have similar screens
sizes (in this case, 768 pixels or less) will get the same style rules.

Note: On their own, media queries probably aren't enough to tum a normal website into a mabile-
friendly one. You'll also need to think about bandwidth and the user experience. On the bandwidth side,
you'll want to use smaller, lightweight images. (You can do this by giving elements background images,
and setting these images in your styles. However, this approach is a nightmare for websites with lots of
pictures.) On the user experience side, you need to think about breaking content down into smaller pieces
(so less scrolling is required) and avoiding effects and interactions that are difficult to navigate with a
touch interface (like pop-up menus)

HTMLS: THE MISSING MANUAL

Building Better
Boxes

GEM IN THE ROUGH

Media Queries for Video

One obvious difference between desktop websites and
mobile websites is the way they use video. A mabile web-
site may still include video, but it will typically use a smaller
video window and a smaller media file, The reasons are
obvious—not only do mobile browsers have slower, more
expensive network connections to download video, they
also have less powerful hardware to play it back.

Using the media query techniques you've just learned, you
can easily change the size of a <video> element to suit a
mobile user. However, it's not as easy to take care of the

butterfly.mp4 or butterfly.ogv, depending on which video
format they support.

<video controls width="400" height="300">
<source src="butterfly mobile.mpa"
type="video/mp4"
media=" (max-device-width: 480px)">
<source src="butterfly.mp4" type="video/mp4">
<source src="butterfly.ogv" type="video/ogg">
</video>

Of course, it's still up to you to encode a separate copy of
your video for mobile users. Encoding tools usually have

crucial second step, and link to a slimmed-down video file. device-specific profiles that can help you out. For example,
they might have an option for encoding “iPad video.” It's
also still up to you to make sure that you use the right me-
dia format for your device (usually, that will be H.264), and

supply video formats for every other browser.

HTML5 has a solution: It adds a media attribute directly
the <source> element. As you learned in Chapter 5, the
<source> element specifies the media file a <video> ele-
ment should play. By adding the media attribute, you can
limit certain media files to certain device types.

Here's an example that hands the butterfly_mobile.mp4
file out to small-screened devices. Other devices get

Building Better Boxes

From the earliest days of CSS, web designers were using it to format boxes of con-
tent. As CSS became more powerful, the boxes became more impressive, creating
everything from nicely shaded headers to floating, captioned figures. And when CSS
cracked the hovering problem, floating boxes were even turned into rich, glowy but-
tons, taking over from the awkward JavaScript-based approaches of yore. With this
is mind, it's no surprise that some of the most popular and best-supported CSS3
features can make your boxes look even prettier, no matter what they hold.

Transparency

The ability to make partially transparent pictures and colors is one of the most basic
building blocks in CSS3. There are two ways to do it.

Your first option is to use the rgba() color function, which accepts four numbers.
The first three values are the red, green, and blue components of the color, from 0 to
255. The final value is the alpha, a fractional value number from 0 (fully transparent)
to 1 (fully opaque).

CHAPTER 8: BOOSTING STYLES WITH CSS3

263

Building Better

Boxes

Here's an example that creates a 50 percent transparent lime green color:

.semitransparentBox {
background: rgba(170,240,0,0.5);
}
Browsers that don’t support rgba() will just ignore this rule, and the element will
keep its default, completely transparent background. So the second, and better, ap-
proach is to start by declaring a solid fallback color, and then replace that color with
a semitransparent one:

.semitransparentBox {
background: rgh(170,240,0);
background: rgba(170,240,0,0.5);
1

This way, browsers that don't support the rgba() function will still color the element’s
background, just without the transparency.

Tip: To make this fallback better, you should use a color that more accurately reflects the semitransparent
effect. For example, if you're putting a semitransparent lime green color over a mostly white background,
the color will look lighter because the white shows through. Your fallback color should reflect this fact, if
possible.

CS$3 also adds a style property named opacity, which works just like the alpha value.
You can set opacity to a value from 0 to 1 to make any element partially transparent:

.semitransparentBox {
background: rgh(170,240,0);
opacity: 0.5;

Figure 8-10 shows two example of semitransparency, one that uses the rgba() func-
tion and one that uses the opacity property.

= : - == Wessl| Figure 8-10:
ST oy — " A, 5 This page serves up semitransparency
L=l =) | 2] CAHTMES\Ch: 08\T html P~ C X |) 57 33 3 .
)28 e Mk s 2 | i3 two different ways: to fade out a picture

© Transparency < el . Sl (using the opacity property) and to let the

background show through a box (using a
background color created with the rgba()
function).

| The background shows through this box, partially.
However, the text gpﬁ;bu&r"f r are opaque. 5

* background shows theough
this dog (and this text).”

264 HTML5: THE MISSING MANUAL

The opacity property is a better tool than the rgba() function if you want to do any
of the following:

+ Make more than one color semitransparent. With opacity, the background col-
or, text color, and border color of an element can become transparent.

+ Make something semitransparent, even if you don’t know its color (for example,
because it might be set by another style sheet or in JavaScript code).

« Make an image semitransparent.

« Useatransition, an animated effect that can make an element fade away or reap-
pear (page 271).

Rounded Corners

You've already learned about the straightforward border-radius property, which lets
you shave the hard corners off your boxes. But what you haven't yet seen is the way
you can tweak this setting to get the curve you want.

First, you can choose a different, single value for the border-radius property. The
border radius is the radius of the circle that's used to draw the rounded edge. Of
course, you don't see the entire circle—just enough to connect the vertical and hori-
zontal sides of the box. Set a bigger border-radius value, and you’ll get a bigger curve
and a more gently rounded corner. As with most measurements in CSS, you can use
a variety of units, including pixels and percentages. You can also adjust each corner
separately by supplying four values:
.roundedBox {
background: yellow;
border-radius: 25px 50px 25px 85px;
}
But that’s not all—you can also stretch the circle into an ellipse, creating a curve that
stretches longer in one direction. To do this, you need to target each corner sepa-
rately (using properties like border-top-left-radius) and then supply two numbers:
one for the horizontal radius and one for the vertical radius:
.roundedBox {
background: yellow;
border-top-left-radius: 150px 30px;
border-top-right-radius: 150px 30px;

}

Figure 8-11 shows some examples.

CHAPTER 8: BOOSTING STYLES WITH CSS3

265

Building Better

Boxes

f [lEessl| Figure 8-11:
2N | 3 RoundedBorders html p-ax J e oy A clever application of border-radius can create

virtually any sort of curve.

l:_: Rounded Borders X L_J

Round the top-right corner:
border-top-right-radius: 50px;

Stretch it out one way...
border-top-right-radius: 150px 50px;

_—

Or go crazy with every corner to
make a deformed box:
border-top-left-radius: 150px 30px;
border-top-right-radius: 100px 50px;
border-bottom-left-radius: 40px 90px;
border-bottom-right-radius: 20px 75px;

#100% ~

Backgrounds

One shortcut to attractive backgrounds and borders is to use images. CSS3 intro-
duces two new features to help out here. First is multiple background support, which
lets you combine two or more images in a single element’s background. Here’s an
example that uses two backgrounds to embellish the top-left and bottom-right cor-
ner of a box:
.decoratedBox {
margin: 50px;
padding: 20px;
background-image: url(‘top-left.png'), url('bottom-right.png');
background-position: left top, right bottom;
background-repeat: no-repeat, no-repeat;
}
This first step is to supply a list with any number of images, which you use to set the
background-image property. You can then position each image, and control wheth-
er it repeats, using the background-position and background-repeat properties. The
trick is to make sure that the order matches, so the first image is positioned with
the first background-position value, the second image with the second background-
position value, and so on. Figure 8-12 shows the result.

266 HTML5: THE MISSING MANUAL

f

Building Better

Boxes

P

combines two background images, which are
joited in its top-left and bottom-right corners.

You can see the difference when you resize the page

(ST

G{V‘l £1 BoxBackground htr O ~ > X “ & Box Background

—

combines two [
round images, which i
sitioned in its top

t and bottom-right

corners.

You can see the dif
when you regize the

Figure 8-12:

It doesn’t matter how
big this box grows—
the two background
images stay fixed at
either corner.

Note: If browsers don't support multiple backgrounds, they'll completely ignore your attempt to set the
background. To avoid this problem, start by setting the background or background-image property with a
fallback color or picture. Then, attempt to set multiple backgrounds by setting background-image with a
list of pictures.

CHAPTER 8: BOOSTING STYLES WITH CSS3

267

Building Better

Boxes

And here’s a revised example that uses the sliding doors technique, a time-honored
web design pattern that creates a resizable graphic out of three pieces: an image for
the left, an image for the right, and an extremely thin sliver that’s tiled through the
middle:
.decoratedBox {
margin: 50px;
padding: 20px;
background-image: url('left.png'), url('middle.png"), url('right.png');
background-position: left top, left top, right bottom;
background-repeat: no-repeat, repeat-x, no-repeat;
}
You could use markup like this to draw a background for a button. Of course, with
all of CSS3's fancy new features, you'll probably prefer to create those using shadows,
gradients, and other image-free effects.

Shadows

CSS3 introduces two types of shadows: box shadows and text shadows. Of the two,
box shadows are generally more useful and better supported, while text shadows
don’t work in any version of Internet Explorer. You can use a box shadow to throw a
rectangular shadow behind any <div> (but don't forget your border, so it still looks
like a box). Shadows even follow the contours of boxes with rounded corners (see
Figure 8-13).

e (ol EMEsw) Figure 8-13:
/ [Shadows | = Shadows can make text float (top), boxes pop out (middle),

€ C | Q Shadowshtmi a8 or buttons look glowy (bottom).

Shadowed;Text.

‘ This shadow follows the rounded edge of a
<div>.

Fake Button

The two properties that make shadows work are box-shadow and text-shadow. Here's
a basic box shadow example:
.shadowedBox {
border: thin #336699 solid;
border-radius: 25px;
box-shadow: 5px 5px 10px gray;
}

268 HTML5: THE MISSING MANUAL

Building Bette
Boxes

The first two values set the horizontal and vertical offset of the shadow. Using posi-
tive values (like 5 pixels for both, in the above example) displaces the shadow down
and to the right. The next value sets the blur distance (in this example, 10 pixels),
which increases the fuzziness of the shadow. At the end is the shadow color. If there’s
any content underneath the box, consider using the rgba() function (page 185) to
supply a semitransparent shadow.

If you want to tweak your shadow, you can tack on two details. You can add another
number between the blur and the color to set the shadow spread, which expands the
shadow by thickening the solid part before the blurred edge starts:

box-shadow: 5px Spx 10px 5px gray;
And you can add the word inset on the end to create a shadow that reflects inside an
element, instead of outside. This works best if you use a shadow that’s directly on top
of the element, with no horizontal or vertical offset:

box-shadow: Opx Opx 20px lime inset;
This creates the bottom example in Figure 8-13. You can use inset shadows to add
hover effects to a button (page 272).

Note: Shadow-crazy developers can even supply multiple shadows, by separating each one with a
comma. But this is usually a waste of developer effort and computing power.

The text-shadow property requires a similar set of values, but in a different order.
The color comes first, followed by the horizontal and vertical offsets, followed by
the blur:
.textShadow {
font-size: 30px;
font-weight: bold;
text-shadow: gray 10px 10px 7px;

}

Gradients

Gradients are blends of color that can create a range of effects, from the subtle shad-
ing behind a menu bar to a psychedelic button that’s colored like a 1960s revival
party. Figure 8-14 shows some examples.

Note: Many web gradients are faked with background images. But CSS3 lets you define the gradient you
want, and gets the browser to do the work. The advantage is fewer image files to schlep around and the
ability to create gradients that seamlessly resize themselves to fill any amount of space.

You've already had some gradient-building experience with the canvas (page 208),
and CSS3 gradients are similar. As with the canvas, CSS supports two types of gra-
dients: linear gradients that blend from one band of color to another, and radial
gradients that blend from a central point to the outer edges of your region.

CHAPTER 8: BOOSTING STYLES WITH CSS3 269

Building Better

Boxes

(e i i (=lE | Figure 8-14:
| L Geadients *| i2 - At the heart of it,
&2 memcffmmuzcmma@c..ua;n.mmn s S el * O ! g grdc‘*etzt;nalﬁeztzftshg,fg

two or more colors.

But that simple recipe
stication. cooks up into plenty
R yelow. 2o of different dishes.

This linear gradient goes from comer to comer. Light colors make for & subtie effect.
background: -moz-linear-gradient(top left, white, lightblue)

background: -moz-linear-gradient{top, red 0%, orange 20%, yelow 80%, violet 100%);

e S gl it ity S lag iy Rt e it el o]

There aren't any special CSS properties for creating gradients. Instead, you can use a
gradient function to set the background property. Just remember to set the property
to a solid color first to create a fallback for browsers that don't support gradients.
(That includes Internet Explorer, which won't add gradient support until IE 10.)

There are four gradient functions, and they all need the awkward vendor prefixes
you learned about on page 243. In this section, you'll look at examples that work
on Firefox (and use the -moz- prefix). You'll need to add identical -webkit- and -o-
versions to support Chrome, Safari, and Opera.

The first function is linear-gradient(). Here it is in one of its simpler forms, shading
a region from white at the top to blue at the bottom:

.colorBlendBox {
background: -moz-linear-gradient(top, white, blue);

}

Replace top with left to go from one side to another. Or, use a corner to blend
diagonally:

background: -moz-linear-gradient(top left, white, lightblue)
If you want multiple color bands, you simply need to supply a list of colors. Heres
how you create a series of three horizontal color stripes:

background: -moz-linear-gradient(top, red, orange, yellow);
Finally, you can control where each color starts (bumping some together or off to
one side), using gradient stops. Each gradient stop is a percentage, with 0 percent be-
ing at the very start of the gradient and 100 percent being at the very end. Here’s an
example that extends the orangey-yellow section in the middle:

270 HTML5: THE MISSING MANUAL

background: -moz-linear-gradient(top, red 0%, orange 20%, yellow 80%,
violet 100%);
To get a radial gradient, you use the radial-gradient() function. You need to supply
a color for the center of the circle and a color for the outer edge of the circle, where
it meets the boundaries of the element. Here'’s a radial gradient that places a white
point in the center and fades out to blue on the edges:
background: -moz-radial-gradient(circle, white, lightblue)

There are a pile more options that let you move the center point of the circle, stretch
it into an ellipse, and change exactly where the colors fade. Different browser mak-
ers are still nailing down simple, consistent syntax that they can all use. For more
gradient examples, and to see the two gradient functions not discussed here—that’s
repeating-linear-gradient() and repeating-radial-gradient()—check out the short
Safari blog post at www.webkit.org/blog/1424/css3-gradients. Or, try an online Mi-
crosoft tool that lets you click-and-pick your way to the gradient you want, and then
gives you markup that works with every browser, including IE 10. (Try it at http://
tinyurl.com/5rzocsk.)

Tip: In all these examples, gradients were used with the background property. However, you can also use
gradient functions to set the background-image property in exactly the same way. The advantage here is
that background-image lets you use an image fallback. First, set background-image to a suitable fallback
image for less-equipped browsers, and then set it again using a gradient function. Most browsers are
smart enough that they won't download the gradient image unless they need it, which saves bandwidth.

Creating Effects with Transitions

CSS made every web developer’s life a whole lot easier when it added pseudoclasses
(page 389). Suddenly, with the help of :hover and :focus, developers could create in-
teractive effects without writing any JavaScript code. For example, to create a hover
button, you simply supply a set of new style properties for the :hover pseudoclass. These
styles kick in automatically when the visitor moves the mouse pointer over your
button.

Tip: If you're the last web developer on earth who hasn't rolled your own hover button, you can find
a detailed tutorial in Creating a Website: The Missing Manual (O'Reilly), or in an online article at www.
elated.com/articles/css-rollover-buttons.

Great as they are, pseudoclasses aren't cutting edge any longer. The problem is their
all-or-nothing nature. For example, if you use the :hover pseudoclass, then your style
settings spring into action immediately when someone hovers over an element. But
in Flash application or in desktop programs, the effect is usually more refined. The
hovered-over button may shift its color, move, or begin to glow, using a subtle ani-
mation that takes a fraction of a second to complete.

CHAPTER 8: BOOSTING STYLES WITH CS8S§3

Creating Effects with

Transitions

271

Creating Effects with

Transitions

Some web developers have begun to add effects like these to their pages, but it usu-
ally requires the help of someone else’s JavaScript animation framework. But CSS3
has a simpler solution—a new transitions feature that lets you smoothly switch from
one group of settings to another.

A Basic Color Transition

To understand how transitions work, you need to see a real example. Figure 8-15
shows a color-changing button that’s bolstered with some CSS3 transition magic.

Figure 8-15:
If this were an ordinary rollover button, its background would
Hover Here! Jjump from green to yellow in one step. But with transitions,
{h the green blends into yellow, taking half a second to make the

| change. Move the mouse off, and the same transition plays out

— in reverse, returning the button to its normal state. The result is a
button that just feels more polished.

272

Here’s the nontransition way to style this button:
.slickButton {
color: white;
font-weight: bold;
padding: 10px;
border: solid 1px black;
background: lightgreen;
cursor: pointer;

}

.slickButton:hover {
color: black;
background: yellow;

}
Here’s the button this markup formats:

<button class="slickButton">Hover Here!
To smooth this change out with a transition, you need to set the transition property.
You do this in the normal slickButton style (not the :hover pseudoclass).

At a minimum, every transition needs two pieces of information: the CSS property
that you want to animate and the time the browser should take to make the change.
In this example, the transition acts on the background property, and the duration is
0.5 seconds:
.slickButton {

color: white;

font-weight: bold;

padding: 10px;

border: solid 1px black;

background: lightgreen;

cursor: pointer;

HTMLS5: THE MISSING MANUAL

-webkit-transition: background 0.5s;
-moz-transition: background 0.5s;
-o-transition: background 0.5s;

}

.slickButton:hover {
color: black;
background: yellow;

}

As you'll no doubt notice, this example adds three transition properties instead of
the promised one. That's because the CSS3 transitions standard is still under devel-
opment, and the browsers that support it do it using vendor prefixes. To get your
transition to work in Chrome, Safari, Firefox, and Opera, you need to set three ver-
sions of the same property—and you'll need to add another one with the -ms- prefix
if Internet Explorer 10 supports transitions (as it’s expected to do). Sadly, using ex-
perimental properties can make for some messy style sheets.

There’s one quirk in this example. The hovered-over button changes two details: its
background color and its text color. But the transition applies to the background
color only. As a result, the text blinks from white to black in an instant, while the new
background color fades in slowly.

There are two ways to patch this up. Your first option is to set the transition property
with a comma-separated list of transitions, like this:
.slickButton {

-webkit-transition: background 0.5s, color 0.5s;
-moz-transition: background 0.5s, color 0.5s;
-o-transition: background 0.5s, color 0.5s;

}
But there’s a shortcut if you want to set transitions for all the properties that change,
and you want to use the same duration for each one. In this case, you can simply add
a single transition and use all for the property name:

-webkit-transition: all 0.5s;
-moz-transition: all 0.5s;
-o-transition: all 0.5s;

Note: There are a few more details that can fine-tune a transition. First, you can choose a timing function
that controls how the transition effect flows—for example, whether it starts slow and then speeds up or
starts fast and then decelerates. In a short transition, the timing function you choose doesn't make much
of a difference. But in a longer, mare complex animation, it can change the overall feel of the effect. Sec-
ond, you can also add a delay that holds off the start of the transition for some period of time. For more
information about both, check out the official specification at www.w3.org/TR/css3-transitions.

Right now, transitions work in Opera 10.5, Firefox 4, and any version of Safari or
Chrome you'll ever meet. They aren't supported in Internet Explorer (although
they’re planned for IE 10). However, this lack of support isn’t the problem it seems.

CHAPTER 8: BOOSTING STYLES WITH CSS3

Creating Effects with

Transitions

273

Creating Effects with

Transitions

274

Even if a browser ignores the transition property, it still applies the effect. It just
makes the change immediately, rather than smoothly fading it in. Thats good
news—it means a website can use transitions and keep the essentials of its visual
style intact on old browsers.

More Transition Ideas

It’s gratifying to see that CSS transitions can make a simple color change look good.
But if you're planning to build a slick rollover effect for your buttons or menus, there
are plenty of other properties you can use with a transition. Here are some first-rate
ideas:

« Transparency. By modifying the opacity property, you can make an image fade
away into the background. Just remember not to make the picture completely
transparent, or the visitor won't know where to hover.

« Shadow. Earlier, you learned how the box-shadow property can add a shadow
behind any box (page 268). But the right shadow can also make a good hover
effect. In particular, consider shadows with no offset and lots of blur, which cre-
ate more of a traditional glow effect. You can also use an inset shadow to put the
effect inside the box.

« Gradients. Change up a linear gradient or add a radial one—either way, it’s hard
to miss this effect.

« Transforms. As you'll learn in the next section, transforms can move, resize,
and warp any element. That makes them a perfect tool for transitions.

On the flip side, it’s usually not a good idea to use transitions with padding, margins,
and font size. These operations take more processing power (because the browser
needs to recalculate layout or text hinting), which can make them slow and jerky.
If you're trying to make something move, grow; or shrink, you're better off using a
transform, as described next.

Transforms

When you explored the canvas, you learned about transforms—ways to move, scale,
skew, and rotate content. In the canvas, you can use transforms to change the things
you draw. With CSS3 transforms, you use them to change the appearance of an ele-
ment. Like transitions, transforms are a new and experimental feature. To use them,
you need to stack up the vendor-prefixed versions of the transform property. Here’s
an example that rotates an element and all its contents:
.rotatedElement {
-moz-transform: rotate(45deg);

-webkit-transform: rotate(45deg);
-o-transform: rotate(45deg);

}

HTMLS: THE MISSING MANUAL

Creating Effects with

Transitions

WORD TO THE WISE

Don‘t Leave Old Browsers Behind

As you know, browsers that don't support transitions switch that sets a different background color and then sets a gra-
between states immediately, which is usually a good thing. dient. This way, older browsers will see the background
However, if you use CSS3 glitter to make your states look change to a new solid color when the button is hovered
different (for example, you're adding a shadow or a gra- over. More capable browsers will see the background
dient to a hovered-over button), old browsers ignore that change to a gradient fill. For even more customizing power,
too. That's not so good. It means that visitors with less ca- you can use Modernizr, which lets you define completely
pable browsers get no hover-over effect at all. different styles for older browsers (page 240).

To solve this problem, use a fallback that older browsers
understand. For example, you might create a hover state

In the previous example, the rotate() function does the work, twisting an element 45
degrees around its center. However, there are many more transform functions that
you can use, separately or at the same time. For example, the following style chains
three transforms together. It enlarges an element by half (using the scale transform),
moves it to 10 pixels to the left (using the scaleX transform), and skews it for effect
(using the skew transform):

.rotatedElement {
-moz-transform: scale(1.5) scaleX(10px) skew(10deg);
-webkit-transform: scale(1.5) scaleX(10px) skew(10deg);
-o-transform: scale(1.5) scaleX(10px) skew(10deg);

}

Note: A skew twists an element out of shape. For example, imagine pushing the top edge of a box out
to the side, while the bottom edge stays fixed (so it looks like a parallelogram). To learn more about
the technical details of transform functions, check out Firefox's helpful documentation at http;/tinyur!.
com/6ger2wp, but don't forget to add the other vendor prefixes if you want it to work in Chrome and
Opera.

Transforms don't affect other elements or the layout of your web page. For example,
if you enlarge an element with a transform, it simply overlaps the adjacent content.

Transforms and transitions make a natural pair. For example, imagine you want to
create an image gallery, like the one shown in Figure 8-16.

CHAPTER 8: BOOSTING STYLES WITH CSS3 275

Creating Effects with

Transitions

= b E‘-E} E ==& Figure 8-16:
| (© Image Galtery (©) Image Gallery Bae Here, a tranSfOrm
C Q ImageGallery.htmi S C Q ImageGaliery.htm| X[makes the hovered-
, over image stand out.
Cute Animal Page | Cute Animal Page

E
u

This example starts out simple enough, with a bunch of images wrapped in a <div>
container:

<div class="gallery">

</div>
Here’s the style for the <div> that holds all the images:
.gallery {
margin: Opx 30px Opx 30px;
background: #D8EEFE;
padding: 10px;
}
And here’s how each element starts off:
.gallery img {
margin: 5px;
padding: 5px;
width: 75px;
border: solid 1px black;
background: white;

}
You'll notice that all the images are given explicit sizes with the width property. That's
because this example uses slightly bigger pictures that are downsized when they’re
shown on the page. This technique is deliberate: It makes sure the browser has all
the picture data it needs to enlarge the image with a transform. If you didn’t take this
step, and used thumbnail-sized picture files, the enlarged version would be blurry.

276 HTML5: THE MISSING MANUAL

Creating Effects with

Transitions

Now for the hover effect. When the user moves the mouse over an image, the page
uses a transform to rotate and expand the image slightly:
.gallery img:hover {
-webkit-transform: scale(2.2) rotate(1odeg);

-moz-transform: scale(2.2) rotate(1odeg);
-o-transform: scale(2.2) rotate(1o0deg);

}
Right now, this transform snaps the picture to its new size and position in one
step. But to make this effect look more fluid and natural, you can define an all-
encompassing transition in the normal state:
.gallery img {
margin: 5px;
padding: 5px;
width: 75px;
border: solid 1px black;
-webkit-transition: all 1s;
-moz-transition: all 1s;
-o-transition: all 1s;
background: white;
}
Now the picture rotates and grows itself over 1 second. Move the mouse away, and it
takes another second to shrink back to its original position.

POWER USERS’ CLINIC

The Future of CSS-Powered Effects

The examples on these pages just scratch the surface of
what transforms and transitions can do. Although these
features are far from being finalized, you can use several
experimental features to extend them further:

« 3-D transforms. When you get tired of moving
an element around in two dimensions, you can
use 3-D transforms to move, rotate, and warp it in
three-dimensional space. The creatars of Safari have
a brief walkthrough at www.webkit org/blog/386/
3d-transforms.

« Animations. Right now, transitions are limited to
fairly simple interactions—mostly, that's when some-
one hovers with the mouse (using the :hover pseu-
doclass) or changes focus to an input control (using
:focus). The animation feature extends where you can
use transitions, allowing you to apply them dynami-
aally, in response to a JavaScript event. For example,
you might create a rotation effect that kicks in when
you click a button. You can read the specification at
www.w3.0rg/TR/css3-animations.

» A sprinkling of JavaScript. Add a little bit of code
to dynamically turn styles on and off, and you can
build complex chunks of user interface, like a 3-D im-
age carousel or a collapsible group of panels (often
called an accordion control). To see some examples
in action, visit Attp;/css3.bradshawenterprises.com.

Right now, none of these features are worth the trouble.
First, they require lots of messy vendor-specific prefixes,
which makes mistakes all too easy and forces you to test
the page on every mainstream browser. Second, these fea-
tures aren't available on many of today’s browsers. Anima-
tions, for instance, aren’t supported on any version of IE
or Opera (at the time of this writing), or on Firefox 4. And
trying to add a workaround is more work than using a dif-
ferent approach from the start.

Today, the best practical solution for animated effects is a
JavaScript library like jQuery Ul or MooTools. But CSS3 is
the clear future of web effects, once the standards settle
down and modern browsers have colonized the computers
of the world.

CHAPTER 8: BOOSTING STYLES WITH CSS3

277

